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Abstract1

Waveform correlation detectors used in seismic monitoring scan geophysical data to test two com-2

peting hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform,3

or, (2) only noise. In reality, geophysical wavefields include signals triggered by non-target sources4

(background seismicity) and target signals that are only partially correlated with the waveform tem-5

plate. We reform the waveform correlation detector hypothesis test to accommodate deterministic6

uncertainty in template/target waveform similarity and thereby derive a new detector using convex7

set projections for use in explosion monitoring. Our analyses give probability density functions8

that quantify the detectors’ degraded performance with decreasing waveform similarity. We then9

apply our results to three announced North Korean nuclear tests and use International Monitoring10

System (IMS) arrays to determine the probability that low magnitude, off-site explosions can be11

reliably detected with a given waveform template.12

2



Introduction13

Seismic sources with colocated hypocenters that are well separated in time often produce correlated14

waveforms. Monitoring missions exploit this waveform similarity to identify repeated explosions15

from localized target regions with multichannel correlation detectors (MacCarthy et al. (2008);16

Gibbons and Ringdal (2006); Carmichael et al. (2016)). These detectors operate as matched fil-17

ters by scanning reference, or “template” waveforms, recorded by multi-element receiver networks18

against commensurate data streams to search for signals of identical shape with unknown ampli-19

tude. Significant correlation between such a network-measured template and a potential waveform20

match (target waveform) thereby requires similar source time functions and locations. This means21

that a matching template and target waveform include equivalent features within their wavefronts22

that record identical relative arrival times at each array receiver (same raypaths). Correlation de-23

tectors quantify evidence of such matching by comparing a wavefield-derived detection statistic to24

a noise-dependent declaration threshold (Harris (1989, 1991)). The significance of the detection25

statistic, its threshold, and their relation to template/target waveform similarity is conditional on26

several factors that include template bandwidth and target signal amplitude (Weichecki-Vergara27

et al. (2001); Ford and Walter (2015)). Deterministic uncertainties in these signal attributes, how-28

ever, often ambiguously relate to source attributes such as spatial separation or relative magnitude29

of target explosions (Dodge and Walter (2015)). For instance, signals triggered by a large explo-30

sion that is spatially separated from a template source can produce the same correlation value as31

waveforms triggered by a relatively weak, template-colocated explosion (Schaff (2010)). Because32

these correlation statistics are indistinguishable, certain estimation methods will erroneously pro-33

duce identical relative magnitude estimates for both event-pairs. In these cases, uncertainty in34

correlation parameters can degrade the reliability of related source parameter estimates.35

These correlation challenges have practical consequences for monitoring agencies like the Compre-36

hensive Nuclear Test Ban Treaty Organization (CTBTO), who are charged with detecting signa-37

tures of nuclear explosions. To perform this mission, the CTBTO assembles and processes data38

collected from a global network of instruments called the International Monitoring System (IMS)39
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that includes seismic arrays. Waveform processing pipelines at the CTBTO, in particular, imple-40

ment correlation detectors using these array data to identify repeating explosions at known nuclear41

test sites (Bobrov et al. (2014)). It is therefore crucial to the CTBTO mission that they under-42

stand the operational performance of these detectors in realistic monitoring scenarios, such as when43

sources are separated by distances that are comparable to a seismic wavelength. The importance44

of establishing such performance limits was recently highlighted by alleged seismic evidence that45

supported claims of an unannounced nuclear test in North Korea during May of 2010 (Zhang and46

Wen (2015)). In that case, researchers declared a correlation match between a low magnitude47

(mb < 2) seismic event and template waveforms measured from prior North Korean tests, at a48

statistical threshold conventionally considered uninterpretable. Their hypocentral solutions also49

placed the supposed explosion source away from previous test locations. These claims motivated50

seismologists to reevaluate the general applicability of using waveform correlation with IMS data to51

identify low magnitude explosions near test sites. Ford and Walter ((2015)) adapted a correlation52

detector to spectrally rescale target explosions by a specific source size and thereby monitor the53

North Korean Test Site (NKTS) for waveforms triggered by explosions with higher-than-template54

corner frequencies. Carmichael and Hartse (Carmichael and Hartse (2016)) modified a similar cor-55

relation detector to account for background seismicity and template/target source separation, and56

thereby estimated threshold magnitudes for explosions located near the NKTS. While these stud-57

ies provide insight into correlation, they also raise additional questions. In particular, it remains58

unclear if different detectors could model unanticipated inconsistencies between a template and a59

hypothetical target waveform’s geometry. More research is therefore required to understand the in-60

fluence of waveform dissimilarity on the capability of waveform detectors that process IMS data. In61

this paper, we quantify how deterministic uncertainties in target waveform geometry superimpose62

with noise to inflate the magnitude at which a waveform is reliably detected with IMS arrays. In63

particular, we develop a new detector using convex set projections to compare template and target64

signal decorrelation against the probability of explosion detection. We then apply this detector to65

three announced North Korean nuclear tests recorded on IMS stations and empirically estimate66

detection probabilities for a range of source sizes and hypocentral separation distances. We thereby67
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construct receiver operating characteristic (ROC) curves to demonstrate that our convex-set de-68

tector performs competitively with a correlation detector while showing a better agreement with69

predictions and producing fewer empirical false alarms. We suggest that this detector provides a70

more realistic assessment of IMS monitoring capability when target explosions are not collocated71

with template sources, or waveforms are not entirely repeatable. While our analyses focus on ex-72

plosion monitoring, our methods are applicable to geophysical waveform detection from any source73

type.74

Correlation Detectors75

We write ground motion data xk (t) that is recorded on channel k of a seismic network and digitized76

from time t0 at interval ∆t until time T = N ·∆t as:77

xk =

[
xk (t0) , xk (t0 + ∆t) , · · · , xk (t0 + (N − 1)∆t)

]T

. (1)

We similarly represent N -sample, L-channel data as matrix x = [x1, x2, · · · , xL], where column78

k contains signal xk sampled from time t0 until time t0 + (N − 1)∆t, and row l of x contains a79

network-wide sample of ground motion at t0+(l−1)∆t. We use analogous notation for multichannel80

template waveforms w and noise n. To find signals within a noisy data stream with the same shape81

as such a template, we compare two competing hypotheses. The first hypothesis H0 presumes that82

data x contain only zero mean Gaussian noise (n) of unknown variance. The second hypothesis83

(H1) presumes x consists of an amplitude scaled template waveform (w) of unknown amplitude A84

plus Gaussian noise of unknown variance (x = Aw+ n):85

H0 : x = n ∼ N
(
0, σ2I

)
(noise present, σ unknown)

H1 : x = Aw + n ∼ N
(
Aw, σ2I

)
,

(noise present, A, σ unknown)

(2)
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where N (µ,Σ) symbolizes the multivariate normal distribution with mean µ and covariance Σ.86

Temporal sample correlation within a channel or between sensor channels generally requires a non-87

diagonal covariance structure so that Σ 6= σ2I, in contrast to Equation 2. However, such structure88

is often representable using a scalar NE that parametrizes each probability density function (PDF)89

and represents the effective number of statistically independent samples in x; Appendix B outlines90

estimating NE as N̂E in the context of correlation.91

We derive a multichannel correlation detector from the competing hypotheses in Equation 2 with a92

generalized likelihood ratio test for x. In simplest terms, this ratio divides the PDF of x under H193

by the PDF for x under H0, where each function is evaluated at the maximum likelihood estimates94

(MLEs) of its unknown parameters (σ and A). The resultant statistic r (x) gives an estimate for95

the true waveform cross correlation ρ. The associated ratio test on r (x) compares the similarity96

between a template w and commensurate data stream x against a noise-dependent threshold η97

according to the decision rule (Harris (1991)):98

r (x) =

L∑
k

xT
kwk√√√√ L∑

k

xT
kxk ·

L∑
k

wT
kwk

,
〈x,w〉
‖x‖‖w‖

H1

≷
H0

η, (3)

where the Frobenius inner product 〈x, •〉 and Frobenius norm ‖ • ‖ extend vectorial dot product99

operations to matrix data. The Neyman-Pearson criteria determines a particular threshold η for100

event detection from the PDF of r (x). This criteria uses a constant false-alarm on noise constraint101

PrFA to compute η as the inverse, right-tail probability of r (x) under the null hypothesis H0:102

103

PrFA =

∫ 1

η

fR (r;H0) dr, (4)

where fR (r;H0) is the PDF for r (x) under H0. This threshold also sets the target waveform104
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detection probability PrD:105

PrD =

∫ 1

η

fR (r;H1) dr (5)

where fR (r;H1) is the PDF for r (x) under H1. We derive the general PDF under hypothesis Hk106

(k = 0, 1) in Appendix A (Equation A.6), where we show:107

fR (r;Hk) = B

r2;
1

2
,

1

2
(NE − 1) , λ, λ⊥

+

B

−r2;
1

2
,

1

2
(NE − 1) , λ, λ⊥

 .

(6)

Here B (t,N1, N2, α, β) is the doubly noncentral Beta distribution function. It is evaluated at t, has108

N1 and N2 degrees of freedom, and noncentrality parameters α and β. Given these parameteri-109

zations, Equation 3 with Equation 4 define the multichannel correlation detector and Equation 5110

quantifies its detection performance. The scalars λ and λ⊥ shaping fR (r;Hk) are respectively pro-111

portional to the template-coherent and template-incoherent portions of the target waveform energy112

(Equation A.3). Therefore, λ quantifies the detection power of the correlation detector (Figure 1).113

When λ⊥ = λ = 0, no signal is present and H0 is true. When λ⊥ = 0 and λ > 0, H1 is true.114

Then the target and template waveforms are identical at each network receiver except in amplitude115

and noise content. In such cases, correlation detectors provide an optimal capability to identify116

waveforms of known shape in Gaussian noise (Kay (1998, page 133)). In more realistic cases, the117

seismic wavefield includes more than just noise, or waveforms of known shape. Consequently, the118

hypotheses in Equation 2 misrepresent observations. The null hypothesis insufficiently describes119

noisy signals like x = u + n (u 6= 0) that are triggered by background seismicity (earthquakes,120

mining blasts). Such waveforms may be partially correlated with the template and appear to satisfy121

H1. Likewise, the alternative model/hypothesis in Equation 2 insufficiently describes noisy target122

waveforms x = u + n (u 6= Aw) that are partially decorrelated with the template. Such target123
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events may be triggered by explosions of interest that are spatially separated from the template’s124

source, so that phase segments within each wavefront take dissimilar paths and destructively inter-125

fere. These signals would be partially incoherent with the template and may appear to satisfy H0.126

We write this latter hypothesis error symbolically:127

H1 error: x = u+ n 6= Aw + n

=⇒ template/target mismatch,

(7)

and consider H0 errors triggered by template-correlated background seismicity in parallel work.128

Proper treatment of realistic errors under H1 requires waveform detection methods that account129

for scenarios where target signals are not limited to amplitude-scaled copies of a template.130

Figure 2 illustrates two competing cases where single-channel target waveforms show different levels131

of similarity with a template. The left panel shows an example in which the target signal is rea-132

sonably represented with the conventional correlation hypothesis (Equation 2). Specifically, peaks133

and troughs within the template and target waveforms generally match in timing and amplitude134

(Figure 2a) so that localized cross-correlation is reasonably stable over the high energy portions135

of the signal (Figure 2b). The right panel provides an example where the correlation hypothesis136

poorly represents amplitude scaling between the template and target waveform (Equation 7). In137

this latter case, the relationship between peaks and troughs of the template and target waveform138

(Figure 2c) is often unclear. The localized cross-correlation alternatively shows that some waveform139

segments have moderate correlation, while others are entirely decorrelated (Figure 2d).140

Estimating Deterministic Decorrelation141

To quantify decorrelation caused by waveform dissimilarity, we consider the correlation coefficient142

between a zero-mean template waveformw and a zero-mean target waveform u. Both waveforms are143

respectively contaminated by zero-mean noise n1 and n2 of variance σ2
1 and σ2

2 that is stationary144

over their N -sample lengths. The true correlation coefficient ρ between these waveform data is145
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defined as:146

ρ =
E {〈u+ n1,w + n2〉}√

E {||u+ n1||2}E {||w + n2||2}
, (8)

where E {•} is the expected value operator. Equation 8 is reducible to a product of two distinct coef-147

ficients that represent different sources of degradation from perfect correlation. One is attributable148

to the effects of noise. The other is attributable to the dissimilarity between the underlying noise-149

free waveforms. We illustrate this factorization by first computing certain moments of the noise field150

to simplify the following algebra: since E
{
||nk||2

}
= σ2

k(NE − 1), and E {〈w,nk〉} = E {〈u,nk〉}151

= 0 (k = 1, 2), it follows from Equation 8 that:152

ρ =
||w|| ||u||
σ1 σ2

·

1

(NE − 1)2

E {〈w,u〉}
||w|| ||u||√√√√√√E


||u||2

||n1||2
+ 1

E


||w||2

||n2||2
+ 1


.

(9)

We then factor ρ into a product of three terms:153

ρ =

||u||
σ1(NE − 1)√√√√√√E


||u||2

||n1||2
+ 1



||w||
σ2(NE − 1)√√√√√√E


||w||2

||n2||2
+ 1


〈w,u〉
||w|| ||u|| (10)

and rewrite these factors using the definition of SNR:154

ρ =

√
SNR (w)√

SNR (w) + 1

√
SNR (u)√

SNR (u) + 1︸ ︷︷ ︸
noise part: ρ0

〈w,u〉
||w|| ||u||︸ ︷︷ ︸

signal part: ρ∞

= ρ0 · ρ∞

(11)
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where SNR(w) abbreviates the ratio of signal to noise power of w. The “noise” correlation term155

ρ0 in Equation 11 depends on waveform SNR, whereas ρ∞ measures the deterministic correlation156

between the underlying infinite SNR signals; we equivalently call 1−ρ∞ the deterministic waveform157

dissimilarity. In the case that u = Aw, ρ∞ = 1, and the true correlation equates the noise158

correlation (ρ = ρ0). In all other cases, deterministic differences between the template and the159

detected waveforms contradict H1, imply ρ∞ < 1, and indicate the repeating-signal hypothesis is160

not representative of the detected waveform. To estimate ρ∞ using the sample correlation r (x),161

we rearrange Equation 11 and suggest the estimator ρ̂∞:162

ρ̂∞ = sign [r (x)] ·min


|r (x) |
ρ0

, 1

 (12)

where min {•} prevents ρ̂∞ from assuming nonsensical correlation values that exceed one. Scalar163

ρ0 is estimable from reference waveforms, as detailed in our error analysis (Appendix E).164

Correlation Under an H1 Error165

We now form a test on target waveforms that includes deterministic uncertainties in waveform166

correlation in the presence of background noise. Empirical detection routines typically show that167

the Gaussian model represents observed noise (n) well (Carmichael and Hartse (2016); Carmichael168

et al. (2016)). The deterministic model (Aw) for the such signals, however, can poorly represent169

target waveforms. An admissible alternative hypothesis H1 must instead permit some deterministic170

incoherence between template and target waveforms without increasing false triggers on noise.171

Quantitatively, we expect non-unit correlation between a template w and noise-free portions of a172

target waveform. If such a target waveform is x = u + n (Equation 7), this means that:173

〈u,w〉
||u||||w||

, ρ∞ ≤ 1, (13)
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where the∞ subscript indicates the noise-free, or infinite SNR waveform correlation (Equation 11).174

Potential target waveforms u are then constrained to a set C that includes all signals that correlate175

above a signal-dependent threshold ρ∞ with the template w:176

C =

{
u :

〈u,w〉
||u|| ||w||

≥ ρ∞
}
. (14)

Equation 14 geometrically represents a high-dimensional cone in N × L-dimensional space with177

a vertex parallel to w and aperture arcos (ρ∞) The set of all possible target waveforms thereby178

occupy the interior of C (C◦) or its boundary (∂C). Set C then forms the signal present model of179

our reformed hypotheses test:180

H0 : x = n ∼ N
(
0, σ2I

)
(noise present, σ unknown)

H1 : x = u + n ∼ N
(
u, σ2I

)
(noisy target present, u ∈ C, σ unknown).

(15)

We compare these hypotheses with an associated detection statistic that we derive from a generalized181

log-likelihood ratio on x (as with r (x)). This derivation (Appendix C) exploits the theory of182

projection-onto-convex sets (Stark and Yang (1998, pg. 111)) and shows that the “cone” statistic183

s (x) depends on the size (norm) of the conic projection PC (x) of x onto the boundary ∂C of C.184

The resulting scalar test provides a decision rule similar to the test in Equation 3 that uses r (x).185

The cone decision rule is:186

s (x)
H1

≷
H0

η, (16)
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with detection statistic:187

s (x) =



0 :
r√

1− r2
< −c, PC (x) = 0

γ

||x||
:

r√
1− r2

∈
[
−c, 1

c

]
, PC (x) ∈ ∂C

1 :
r√

1− r2
>

1

c
, PC (x) ∈ C◦

(17)

where C◦ is the interior of C,188

γ , ρ∞ ||x||
(
r + c

√
1− r2

)
,

c ,

√
1− ρ2

∞
ρ2
∞

,

(18)

and r abbreviates r (x) (Equation 3). The PDF fS (s;Hk) under hypothesis Hk for cone statistic189

s (x) is also conditioned on the nonlinear projection PC (x) of data stream x onto C. We express190

fS (s;Hk) in Appendix C (Equation C.22) using the law of total probability, along with the corre-191

lation PDF for r(x) (Equation 6) to show that:192

fS (s;Hk) ∝ fR (r (s) ;Hk) ·
∣∣∣∣dr(s)ds

∣∣∣∣ (19)

where r is a function of s:193

r(s) = ρ∞s−
√

1− ρ2
∞

√
1− s2, (20)

and the proportionality constant for fS (s;Hk) normalizes its integral over [0, 1] to one. Since194

fS (s;Hk) is functionally dependent on fR (r;Hk), it is also parameterized by λ and λ⊥ (Equation195

A.3).196

To select a threshold η for event declaration, we compute the inverse, right-tail probability of s (x),197

under H0, at fixed PrFA, using the Neyman-Pearson criteria:198

PrFA =

∫ ∞
η

fS (s;H0) ds. (21)
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Likewise, the probability of detecting a target waveform included in C is the integral of the alter-199

native hypothesis PDF over the same acceptance interval:200

PrD =

∫ ∞
η

fS (s;H1) ds. (22)

The comparison between Equation 21 and Equation 22 quantifies the performance of s (x) as201

a detection statistic for target waveforms imperfectly correlated with the template (ρ∞ < 1).202

Fortunately, both s (x) and fS (s;H1) are functionally dependent upon the correlation statistic203

r (x). Consequently, both the cone statistic and its PDF are evaluable by first running a correlation204

detector (see Correlation Detectors) and then performing a variable transformation on the resulting205

statistic. Our cone detector therefore requires no additional signal scanning routines to correct for206

presence of template-decorrelated target signals.207

Detection Probability versus Magnitude208

We now quantify how decreasing values of ρ∞ reduce the probability of detecting an explosion with209

a given seismic magnitude. We express this performance loss using the relative magnitude ∆m210

between (1) a seismic source that triggers a template waveform and (2) a hypothetical seismic source211

producing a target waveform. In Appendix D, we show that ∆m is related to the noncentrality212

parameter λ that shapes the cone statistic’s PDF fS (s;H1). Specifically, the relative magnitude213

estimate between an explosion that generates a noisy waveform x = u+ n and another explosion214

of magnitude mT that generates a template waveform w is (Equation D.6):215

λ (∆m) = ρ2
∞

‖w‖2

σ2
102·∆m. (23)

Here, ρ∞ is the deterministic waveform correlation between the template and target waveform (last216

factor in Equation 11) and σ2 is the variance within the data stream x. The probability PrD that217

a convex cone detector with statistic s (x) identifies an explosion of magnitude mb = mT + ∆m is218
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then:219

PrD|∆m =

∫ ∞
η

fS (s|λ (∆m) ;H1) ds, (24)

where η is consistent with a false-alarm-on-noise probability PrFA and |λ (∆m) indicates parameter-220

ization by a given relative magnitude ∆m. In particular, Equation 24 quantifies the cone detector’s221

ability to monitor for template-dissimilar waveforms (ρ∞ < 1) produced by explosions of lower222

magnitude (∆m < 0). In the special case that target data contain an amplitude-scaled copy of223

the template waveform (generated by a template-colocated source), ρ∞ = 1, and the cone and224

correlation detector are equivalent. Then Equation 24 reduces to Equation 5 and maintains the225

conditioning on ∆m. In all other cases, the difference in detection power (λ) between the cone and226

correlation detector is quadratic in ρ∞ and PrD|∆m thereby defines a decreasing function of ρ∞227

for a fixed relative magnitude.228

Application: Explosions in North Korea229

We consider a CTBTO monitoring mission to detect explosions at the North Korean Nuclear Test230

Site (NKTS) using a correlation and cone detector with a sub-network of IMS receivers. Our goal is231

to bound the probability of detecting an explosion-triggered waveform originating from the NKTS,232

using a template with a dissimilar shape, where the target explosion is smaller in magnitude than233

that of previous tests. To pursue this goal, we first process target data recording the previous test234

explosions using a maximum likelihood multichannel correlation detector (Equation 3). We then235

use the results of this routine to parameterize a competing cone detector (Equation 16) that we236

also apply to our target data. Based on the results of these routines, we assess our cone detectors’237

capability to detect explosions at increasing values of waveform dissimilarity (1 − ρ∞) and over a238

range of prescribed magnitudes. Last, we use a semi-empirical test to evaluate the performance of239

these competing detectors over range of source sizes and compute the probability of detecting of240

small explosions at the 2006 test site with a template recording the 2013 waveforms.241
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Cone Detector Demonstration242

Our data include three explosions: the 09-Oct-2006, 25-May-2009 and 12-Feb-2013 announced243

nuclear tests, each conducted at the NKTS and separated by ≤ 2.5 km (Begnaud et al. (2011))244

(Table 1). All three events were recorded on IMS seismic arrays deployed in Japan (MJAR) and245

Kazakhstan (MKAR) (Figure 3). Additional arrays also recorded the first explosion, and several246

closer IMS arrays certified after 2007 recorded the later tests. While this study uses MJAR and247

MKAR exclusively, extension to additional NKTS proximal arrays is straightforward.248

To proceed, we collected data from MJAR and MKAR and prepared them for correlation processing249

by detrending each time series in 1 hr segments, demeaning these data with a 60 s running average,250

and then bandpass filtering the results over 1.5-7.5 Hz using a four-pole Butterworth filter. We then251

scanned the 2006 and 2009 explosion data using an identically pre-processed template waveform w252

that we manually extracted from 2013 explosion records by picking high-SNR P-phase segments on253

a subset of channels (Figure 4). To estimate a threshold for match detection (η̂), we established a254

10−8 false-alarm-on-noise probability and inverted for the lower integration bound of Equation 4:255

256

η̂ = argmin
η

{∣∣∣∣10−8 −
∫ 1

η

fR

(
r|N̂E ;H0

)
dr

∣∣∣∣} (25)

Here, |N̂E indicates that the null PDF for r is conditioned on an estimate of the effective degrees257

of freedom NE in data x (Equation B.1), and η̂ is therefore estimated from an imperfectly known258

density function; Carmichael and Hartse ((2016)) describe the additional operational details of this259

detector. Given these estimates, our correlation routine identified both the 2006 and 2009 events,260

but with unequal significance. Specifically, the peak statistic recording the 2006 event measured261

about half the peak statistic recording the 2009 event (r (x)≈ 0.44 versus r (x)≈ 0.86). Hypocentral262

locations reported in the Reviewed Event Bulletin (REB; Table 1) also indicate that the 2006 event263

was further separated from the 2013 source when compared to the more proximal 2009 nuclear264

test. This spatial separation almost certainly reduced the template/target waveform similarity. To265
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quantify such deterministic decorrelation, we applied Equation 12 and estimated ρ∞ between the266

template and each target explosion. These estimates each exceeded the peak correlation statistic267

r (x) and respectively gave ρ̂∞ = 0.5 (2013 versus 2006) and ρ̂∞ = 0.88 (2013 versus 2009). We then268

used the first estimate to reprocess the explosion records with a convex cone detector parameterized269

by ρ∞ = 0.5. These cone detection routines identified both the 2006 and 2009 explosion waveforms,270

but now with almost equal significance. The histograms for these test statistics s (x) matched their271

theoretical PDFs within less than 4% relative error and gave confidence to our threshold estimates272

and support for the cone detector theory developed in Appendix C.273

Having demonstrated the capability of the cone detector to identify explosion-triggered waveforms274

using IMS stations, we employed the 2013 template (w) to estimate the probability of detecting275

other waveforms, triggered by smaller explosions. We focused on waveforms showing template cross-276

correlation values comparable to those measured from the 2009 and 2006 tests. This process included277

two assessments. Our first assessment analyzed the performance of the cone detector over a range of278

deterministic correlation values for a fixed, reference magnitude. We selected this magnitude from a279

prior IMS capability study that concluded mb = 3.25 events originating from North Korea had a 0.90280

probability of being detected on three or more stations with a power detector (Kværna and Ringdal281

(2013)) (with IMS coverage in 2013). We then used this reference event to estimate the conditional282

probability of detecting waveforms triggered by a similarly sized explosion with our cone detector,283

when the target waveforms were decorrelated with our template. We considered particularl values of284

ρ∞ consistent with the two earlier explosions (2006, 2009). Our second assessment estimated cone285

detection probabilities at fixed ρ∞ and variable explosion magnitude. Specifically, we calculated286

the probability of detecting waveforms triggered by explosions collocated with the 2006 and 2009287

tests over a range of prescribed magnitudes. To do so, we applied cone detectors parameterized by288

our two estimates of ρ∞ and thereby constructed two distinct detection probability curves. In both289

of these assessments, we computed the relevant noise-statistics (σ̂, N̂E and η̂) that shaped these290

curves using data recorded 1800 s before and 3600 s after each explosion.291
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Semi-Empirical Performance Comparison292

Our capability assessments (see Cone Detector Demonstration) were limited by data measured293

immediately before and after the 2006 and 2009 tests. To extend our analyses, we processed294

records that included waveforms like those measured during the 2006 explosion over a range of295

magnitudes and noise conditions. We constructed these waveforms by contaminating scaled copies296

of the 2006 test records with additional noise recorded by MKAR and MJAR during the previous297

day (08-Oct-2006). We then used these data to model waveforms triggered by explosions ranging298

from mb = 2.9 to mb = 4.3 units in magnitude and processed them with correlation and cone299

detectors. This procedure included four stages. First, we scaled the 2006 test records by 10∆m to300

mimic waveform amplitudes produced by a hypothetical explosion of template-relative magnitude301

∆m. Second, we added these scaled waveforms ≈ 250 consecutive times to 24 adjacent, 1 hr noise302

windows recorded over 08-Oct-2006. We did not remove any background seismicity, identified by a303

power detector, or otherwise. Third, we processed these degraded data with a correlation and cone304

detector that each included the template recording the 2013 test (Figure 5). The cone detector305

operated with ρ∞ = 0.5 and the same false-alarm-on-noise constraint as the correlation detector306

(Equation 21). Last, we counted the total number of true detections and normalized this count307

by the total number of expected detections in each magnitude bin; we discounted false detections308

from background seismicity. This produced two empirical receiver-operating characteristic (ROC)309

curves that measured the probability of detecting an explosion at the 2006 test location with310

the 2013 explosion template. After computing these ROC curves, we calculated the theoretical311

performance of each detector over a 100-point magnitude grid for comparison (Equation 24). To do312

so, we first estimated the parameters σ2, λ and NE that shaped these curves. To estimate σ2, we313

removed potentially biasing signal from each data stream channel with a power (STA/LTA) detector314

and computed hourly averages of the variance from the remaining data. We then summed these315

channel-wise variance estimates to compute the multichannel variance for each hour of 08-Oct-2006.316

We similarly computed hourly estimates of λ (Equation 23) from our preceding variance estimates317

and prescribed value of ρ∞ = 0.5. This produced 24, hour-specific ROC curves that measured the318
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predicted performance of each detector over our 100 point magnitude grid.319

Results320

The correlation and cone detectors each identified the 2009 and 2006 explosions at MJAR and321

MKAR with the template recorded from the 2013 test (Figure 6). These detectors produced statis-322

tics with several dissimilarities, however. The correlation statistics measured a zero mean in the323

presence of noise and a difference of 0.4 correlation units between target detections (Figures 6a324

and 6c). The cone statistics measured a non-zero mean (0.88) in the presence of noise and nearly325

identical, unit-valued target detections (Figures 6b, 6d and 6e). The inter-event similarity in the326

sample mean of the cone statistic and the near-agreement in its detection maxima follows from the327

(near) inclusion of both target waveforms in the same convex set C. Specifically, the high mean328

of the statistic is a consequence of the cone geometry: Gaussian noise produces larger projections329

onto the cone boundary than onto the cone vertex (template). The near agreement in peak value is330

a consequence of the signal model: both target waveforms populate C and their noisy realizations331

therefore produce similarly sized projections onto it (Equation 17). These detector differences indi-332

cate that the cone statistic is not interpretable with intuition developed from correlation detector333

processing.334

Cone Detector Parameterization335

Our first assessment quantifies the decrease in waveform detection probability versus template336

similarity for explosions of fixed magnitude near the NKTS. This assessment suggests that little337

performance is lost for deterministic correlation values ρ∞ greater than 0.85 (Figure 7) when the338

target source is a small explosion (mb = 3.25). Specifically, the probability of detecting waveforms339

triggered by such an mb = 3.25 explosion, which deterministically cross-correlate with our template340

at ρ∞ = 0.88 (like the 2009 test), is PrD ≈ 0.98. Our cone detector would likely have missed such341

a low magnitude source if it produced waveforms as poorly correlated with the template as those342
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recorded during the 2006 test. In this second case, the diminished signal semblance (ρ∞ ≈ 0.5)343

resulted in a detection probability below 20% for the same false-alarm-on-noise probability.344

Our second assessment shows that explosions near the NKTS that trigger template-dissimilar wave-345

forms must be substantially larger in magnitude than those that trigger more template-similar346

waveforms to achieve the same detection probability (Figure 8). For specificity, we compare wave-347

forms that deterministically correlate with our template as well as those produced by 2006 and348

2009 tests and have the same 0.90 probability of being detected. In this case, an mb = 3.42 explo-349

sion at the 2006 source location has the same chance as being identified with our template as an350

mb = 3.18 explosion at the 2009 source location (Figure 8, white markers). Such a hypothetical351

mb = 3.18 explosion is effectively undetectable with the cone detector (PrD < 6%) if it produces352

waveforms as poorly correlated with the template as those produced by the 2006 explosion. Other353

explosions located near the 2006 test hypocenter would likely produce such template-dissimilar sig-354

nals. Regardless of the cause of such waveform dissimilarity, our example suggests that ≈ 0.4 units355

of cross-correlation reduction can “cost” 0.25 magnitude units of detection capability when using356

certain arrays within the IMS to monitor the NKTS.357

Semi-Empirical Comparison with the Correlation Detector358

Figure 9a shows that our empirical correlation results deviate from predicted detection capability359

that we derived from the hypothesis test of Equation 2. Specifically, these empirical results under-360

perform relative to the theoretical curve that models the target waveform as an amplitude-scaled361

copy of the template buried in noise. In fact, the time-averaged empirical ROC curve (solid line)362

falls outside the expected range of predictions (shaded area) for any detection probabilities that363

exceed about 0.4. The empirical detection results from the cone, in contrast, agree well within our364

associated range of predictions. In this latter case, the time-averaged empirical ROC curve (Figure365

9b, solid line) is interior to the shaded region that marks our predictions, for all but the highest mag-366

nitude values. Importantly, this agreement holds at the 0.90 detection probability threshold that is367

often used as a monitoring benchmark (Gibbons et al. (2012); Kværna and Ringdal (2013)).368
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The width of each shaded region in Figure 9 also indicates that the detector performance can range369

markedly by time of day. Specifically, the detection probability of quasi-repeatable explosions with370

fixed magnitude spanned almost 0.7 probability units over 24 hours (Figure 9, error bars), with371

hour 1 (UCT time) giving the lowest routine-averaged detection probability for both detectors. Our372

estimate for the effective degrees of freedom (estimated as N̂E) also show a corresponding minimum373

at this hour. These minima indicate a relatively strong correlation structure present within the data,374

which may be attributable to microseismic noise. Our manual inspection of waveform data recorded375

at MJAR during this time showed coincident, a high amplitude ≤ 2 Hz spectral peak (not plotted).376

The presence of this peak, and it’s relative absence during other times, suggests that narrowband377

interference is potentially responsible for the degradation of our detector’s capability. We pursue378

the influence of narrowband interference on detection capability in Part II of this work and consider379

other sources of error to the present study in Appendix E.380

Cone versus Correlation Detector Performance381

The empirically-derived ROC curve for the correlation detector indicates a marginal outperfor-382

mance relative to that of the cone detector (Figure 10, stair plots). We expected this performance383

gap, since the cone detector requires a maximum likelihood estimate for an N -dimensional signal384

u and therefore includes additional parametric uncertainty. The correlation detector, by compar-385

ison, requires estimation of a scalar maximum likelihood amplitude A. Despite this disparity, the386

performance gap between the empirical versus theoretical ROC curve for the correlation detector387

is substantial larger than that between the empirical cone-versus-correlation detector ROC curves.388

Figure 10 shows a solid curve that marks the lower-bound on the shaded region from Figure 9a and389

measures the minimum expected discrepancy. The mismatch between the empirical and theoretical390

curves indicate that mb ≈ 3.6 explosions separated ≈ 2 km from the template source (the 2013-to-391

2006 source separation distance) have a > 16% smaller chance of being detected than predicted in392

the same noise conditions (vertical lines). Because the empirically-derived ROC curve for the cone393

detector is bounded within the range of predictions over the same magnitude interval, it shows no394
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analogous discrepancy. Therefore, the cone detector shows better predictive capability compared395

to observations and only marginally lower performance.396

False Alarm Comparison397

In addition to accommodating template-dissimilar waveforms, our cone detector also returned 23%398

fewer nuisance alarms when compared with our correlation detector (Figure 11). We did not399

anticipate this fortunate reduction, since both detectors operated at the same 10−8 false-alarm-on-400

noise probability constraint. We explain this nuisance alarm reduction geometrically: admission of401

any deterministic template/target waveform dissimilarity requires a comparatively rapid inflation of402

detector thresholds to maintain a false-alarm on noise probability consistent with that of a reference403

correlation detector. This inflation occurs because the vector-space representations of noise n have404

greater probability of producing substantial projections onto the target cone boundary (∂C) than405

they do onto the one-dimensional subspace span(w) representing the waveform template (the cone406

vertex). Conic projections of noise are also realized more often during processing (scanning), since407

all vectorial orientations of noise are equally likely. Non-target waveforms (/∈ C) similarly have408

a greater chance of giving substantial projection onto the cone, again because these signals are409

geometrically closer to the cone boundary than to the cone vertex. However, a fixed false-alarm-410

on-noise rate PrFA, identical to that of the correlation detector, requires elevated event declaration411

thresholds for the cone case so that noise-projections are constant. As a result, any deterministic412

correlation loss between target and template waveforms requires a comparatively large, nonlinear413

increase in cone detector thresholds (see Appendix C).414

Discussion415

Our theoretical and observational work both indicate that unanticipated dissimilarities between416

explosively triggered waveforms can contradict the expected monitoring performance of waveform417

correlation detectors that exploit IMS data (Figure 9a, Figure 10). This waveform discrepancy is418
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particularly important when monitoring for small explosions that may be located several km from419

prior test locations. Unfortunately, correlation detectors do not correctly accommodate such un-420

certainty. While the probabilistic expression of these detectors (the PDFs) can be parameterized to421

include deterministic correlation losses (Carmichael and Hartse (2016)), this modification contra-422

dicts the correlation detector’s operational model. Namely, that target waveforms have the same423

shape as the template, and that their relative magnitudes are related through a log-ratio of ampli-424

tudes. Observations from explosions at the NKTS contradict this simplistic assumption. Waveforms425

generated by the spatially separated explosions located there instead exhibit destructive inter-event426

interference and are therefore geometrically dissimilar (not proportional in amplitude).427

The convex cone detector that we have introduced in this study addresses several of these mon-428

itoring challenges. Like a correlation detector, it searches for waveforms that are similar to the429

template waveform in shape. Unlike a correlation detector, it admits a deterministic level of uncer-430

tainty in matching this template’s shape, but maintains the same false alarm on noise probability.431

This admission of waveform uncertainty expands the set of target signals from those that are only432

amplitude-scaled copies of the template to all waveforms that significantly correlate with the tem-433

plate’s underlying signal (as measured by ρ∞). The associated preservation of a false-alarm on434

noise probability means that a more inclusive signal set does not imply more non-target detections.435

The size of this set can also be tuned to any size by adjusting parameter ρ∞. Smaller values of436

ρ∞ then give a larger signal space and correspond to greater uncertainty in the template/target437

waveform similarity.438

There is an unavoidable tradeoff between target signal uncertainty and detection power, however.439

That is, decreased similarity in template/target waveform geometry penalizes the cone detector’s440

performance relative to that of the correlation detector (Figure 10). We suggest that this cost441

is offset by three attributes: (1) a more physically representative signal-present hypothesis that442

provides (2) an improved predictive capability over that of the correlation detector (Figure 9b),443

and (3) a reduction in false alarms on background seismicity (Figure 11). The operational cost of444

including a cone detector in processing pipelines that include correlation detectors is also negligible.445
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This is because the cone statistic requires no additional scanning routines. It only requires a446

functional transformation of the correlation statistic and recalculation of the detection threshold447

used in the decision rule. This transformation, however, is also conditional on the value of the448

correlation statistic because the cone projection is nonlinear (Equation 17). Consequently, the449

mapping from r (x) to s (x) includes implementing a decision tree (piecewise function). This also450

includes little computational cost in pipelines that implement codes with vector arithmetic enabled.451

We concede, nevertheless, that our performance comparison is very limited and requires additional452

empirical study with a larger range of sources, magnitudes, and standoff distances that we have453

included here.454

Despite our emphasis on the limitation of correlation detectors, they remain a valuable seismic455

monitoring tool. This is because they are optimal detectors for target waveforms buried in nor-456

mally distributed noise with known shapes but unknown amplitudes. Their implementation requires457

scrutiny, however. While correlation detectors can identify very low SNR waveforms, the sources458

generating such signals cannot generally be identified on the basis of detection alone. We suggest459

that such identification requires that template and target waveforms share a large deterministic460

cross-correlation value (Equation 11) in the absence of other seismic evidence for source identity.461

In such cases, our cone detector is a useful tool to assess ostensible uncertainty in the application462

of correlation detectors in post-processing stages, after initial detections are made. Such uncer-463

tainty analysis is crucial for monitoring small magnitude sources at near-regional to local standoff464

distances, where additional data on source type may be unavailable (e.g., Zhang and Wen (2015)).465

Our analysis, however, has so far only treated far-regional and teleseismic IMS array measurements.466

We selected these instruments because (1) they recorded all three of the announced explosions con-467

ducted before 2016 and (2) the relatively low SNR values for the 2006 test is demonstrative of468

expected SNR values from smaller explosions recorded at a closer standoff distance. We therefore469

emphasize that our methodology is equally applicable, and probably more important at these closer470

monitoring distances.471

Finally, while our study focused on waveforms triggered by spatially separated explosions, alter-472
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native physical processes involving other seismic sources could also induce deterministic waveform473

differences. Other causes of decorrelation include non overlapping corner frequencies of the source474

time function (Ford and Walter (2015)), damage production near the source (Patton and Taylor475

(2008)), or coincident tectonic release. However, such processes are difficult to observe, whereas476

relative hypocentral locations at the NKTS are generally known within ≈ 200 m or less. Any477

additional study of our cone detector will likely require certain ground-truth locations to assess478

influence from such alternative physical mechanisms that induce waveform changes.479

Conclusion480

Waveform correlation over predicts the capability of IMS arrays to detect non-repeatable low magni-481

tude explosions and can underestimate the associated relative magnitude of any correctly identified482

explosions. Such assessment errors comprise a continuing verification challenge for the CTBTO,483

especially for monitoring smaller magnitude tests. These challenges require detectors that are ex-484

plicitly derived to accommodate waveform dissimilarity. We have provided such a detector. This485

“cone” detector accommodates deterministic differences between template and target waveforms486

and can detect decorrelated signals without increasing false alarms on noise. In addition, it only487

requires records from one previous explosion, unlike a higher-rank subspace detector that needs488

measurements recording several distinct events. While more study is required, we recommend489

implementing cone detector prototypes in processing pipelines to more effectively monitor for low-490

magnitude explosions that may be spatially distributed over a test site.491

To our knowledge, this work is the first to probabilistically quantify how deterministic uncertainty in492

template/target waveform similarity adds to noise to comprehensively degrade waveform correlation493

detector performance. This degradation and analysis has consequences for geophysical monitoring494

operations that are unrelated to explosion detection as well. Namely, these detectors are applicable495

in detection problems where inter-event waveform evolution is driven by spatiotemporal complexity,496

such as in developing aftershock sequences, or in icequake detection, where the source medium moves497
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relative to the receiver.498

We concede that this work did not address several research challenges of waveform correlation.499

Among these is nuisance seismicity, which represents an error in the signal absent model. Our500

future work (Part II) includes addressing these errors and thereby modifying correlation detectors501

to accommodate template-correlated background seismicity into our hypothesis tests.502

Data and Resources503

We acquired seismic data recorded at MJAR and MKAR on 03-Jan-2016 from the International504

Monitoring System (IMS), which is available from the Comprehensive Nuclear-Test-Ban Treaty505

Organization (CTBTO) in Vienna, Austria. We processed all data with the CORAL toolbox written506

in Matlab by Ken Creager, and later expanded by Joshua D. Carmichael while at the University of507

Washington and Los Alamos National Laboratory.508
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6 Various detection statistics computed from the three North Korean tests. The left614

panels’ horizontal axis begins 900 s before REB origin times and shaded data seg-615

ments show time windows centered on points where each data statistic exceeds its616

respective threshold. a: The correlation statistic r (x) (Equation 3) computed by617

processing 2006-test data recorded at MJAR and MKAR with template waveforms618

extracted from the 2013 explosion. The horizontal line shows the PrFA = 10−8
619

threshold. b: The waveform cone statistic s (x) (Equation 17) for the 2006 target620

data, shown with equivalent PrFA = 10−8 detection thresholds. c: Same as a, but621

for the 2009 test data. d: Same as b, but for the 2009 test data. e: A family of622

histograms and predicted (theoretical) PDFs that describe the convex cone statistics.623

Middle, nearly identical solid PDF curves show the histograms computed using s (x)624

data in b and d. Nearly identical dashed curves show predicted null distributions625

using parameter estimates from these data. Filled PDF curves give the alternative626

PDF for s (x), assuming noncentrality parameters consistent with a low SNR mb =627
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marker indicates approximate ρ∞ values associated with the 2009 test. The square632

marker indicates the approximate ρ∞ value associated with the 2006 test. Circular633

markers show where the 0.9 and 0.5 detection probability lines intersect the per-634

formance curve. Vertical lines show deterministic correlation values associated with635
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8 Detection performance of the cone detector at fixed waveform similarity ρ∞ and637

variable explosion magnitude. Curves show the probability of detecting an explosion638

colocated with the 2009 (left) or 2006 source (right) using a template extracted639

from the 2013 test (Figure 4). Horizontal lines show (from top to bottom) 0.95,640

0.9 and 0.66 detection probability thresholds. Circular markers show where the 0.9641

detection probability lines intersect each performance curve, and vertical lines show642

the corresponding magnitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41643

9 Observed and predicted receiver operating characteristic curves for r (x) and s (x)644

versus semi-empirical explosion magnitude. a: Shaded region shows range of ROC645

curves for r (x) (Equation 3) that give the predicted detection performance in noise646

conditions recorded over 24 hrs on 08-Oct-2006. Superimposed stair plot shows the647

empirical detection performance (recorded detections/total events) averaged over 24648

hr of data like that included in Figure 5. Error bars indicate the range in observed649

detection probability over the day and should not be misinterpreted as indicating650

that probability values exceeding one. b: Shaded region shows range of ROC curves651

for s (x) (Equation 16) that give the predicted detection performance for the cone652

detector. Superimposed stair plot show observed detection performance averaged653

over 24 hr of data analogous to that shown in a. . . . . . . . . . . . . . . . . . . . . 42654
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10 Superimposed empirical correlation and cone detection ROC curves from Figure 9.655

The correlation detector provides a marginally higher performance compared with656

the cone detector. The uppermost solid curve compares the lower-bound predicted657

correlation detector performance. The topmost horizontal line shows a reference 0.99658

probability that intersects the prediction curve at the topmost circular marker. The659

corresponding vertical line shows the 0.99 probability explosion magnitude and its660

intersection with the observed correlation detection performance. The lowermost661

horizontal line shows the corresponding magnitude discrepancy at the predicted 0.99662

detection probability (intersection marked by leftmost circular marker). The range663

between the horizontal lines that intersect the vertical axis measures the detection664

probability discrepancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43665

11 A comparison between cumulative false detection counts, per detector processing666

routines. The lowermost dashed curve shows a constant rate of one false alarm per667

three processing routine. The lowermost solid curve shows the observed number of668

false cone detections. The uppermost solid curve shows the observed number of false669

correlation detections. The uppermost dashed curve shows a constant rate of one670

false alarm per two routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44671

C.1 Notional geometry of convex cone projections inside C and onto its boundary ∂C.672

Multichannel signals are vectorially represented here in three dimensions but occupy673

hundreds or thousands of dimensions in practice. . . . . . . . . . . . . . . . . . . . . 56674

C.2 Null hypothesis PDFs for three cases of deterministic template-target waveform cor-675

relation uncertainty: ρ∞ = 1, ρ∞ = 0.99, ρ∞ = 0.9 (where NE = 400). The PDFs676

for r (x) and s (x) equate for identically shaped waveforms as shown by the purple677

and black curves. The shaded region shows a Monte Carlo simulation of the PDF678

for s (x) when ρ∞ = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57679
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C.3 Cone detector thresholds η (Equation 21) for constant values of PrFA compared680

against deterministic uncertainty in the template-target waveform cross correlation681

1 − ρ∞, where NE = 400. The left-most tangent line to the 10−6 curve shows a682

rapid increase in η for small uncertainties in deterministic template/target waveform683

correlation relative to near-linear increases in η for larger uncertainties. ρ∞ = 0684

corresponds to the correlation detector. . . . . . . . . . . . . . . . . . . . . . . . . . 58685
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Table 1: Reviewed Event Bulletin and Correlation Data for North Korean Tests

Origin Time Loc. mb Peak CC Stat. Peak Cone Stat.

10/09/2006 (282) 01:35:27.8 41.28546, 129.10878 4.2 0.44 0.98
05/25/2009 (145) 00:54:43.0 41.29144, 129.08307 4.6 0.86 1
02/12/2013 (043) 02:57:51.1 41.28853, 129.08142 5.0 1 1
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Figure 1: Notional PDF curves for correlation statistics r (x) when NE = 50, for several noncen-
trality parameters. The left-most dashed curve shows the density for r (x) in the noise-only case (λ
= λ⊥ = 0). The leftmost solid curve shows the density for r (x) when a target signal is present (λ
= 10, λ⊥ = 0) The rightmost dashed curve shows the density for r (x) when a partially correlated
signal is present (λ = 5, λ⊥ = 8.66). The rightmost solid curve shows the density when λ = 40.
The vertical line indicates threshold η = 0.35; the shaded area beneath the null distribution where
r (x) > η shows the false alarm-on-noise rate, while shading beneath the solid curve shows the
probability of detecting a target waveform when λ = 10.
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Corr. Window
Comp. Pt.

Time, s Time, s

Corr. Window
Comp. Pt.

Figure 2: Two single channel examples of template/target waveform correlation with differing
levels of signal similarity. The left panel shows relatively high inter-event waveform similarity,
and the right window shows comparatively low waveform similarity; all waveforms are normalized
to unit peak amplitude. a: A template waveform w (darkest seismogram) aligned with a target
waveform at peak correlation to subsample precision. The square function indicates the snapshot
of a 5 s cross-correlation window that scans over the pre-aligned data to compute a localized
correlation coefficient. The window time stamp is indicated by the circular marker. b: Localized
correlation coefficients (CC) computed from the 5 s moving window in a and indicated by the
circular marker. Limited data variability suggests that a waveforms are reasonably proportional
in amplitude; samples after ∼40 s mark where signal drops below the noise. The horizontal line
shows the bulk correlation coefficient (CC) computed over the entire 50 s window. c: Same as a, but
using a target waveform with less similarity with the template. d: Same as b, but including the less
template-similar target waveform shown in c. In this case, the data variability is more pronounced
than that shown in b. The template and target data are disproportionate in amplitude; data near
10 and 13 s are locally correlated (CC = 0.45), whereas data near 17 s are nearly decorrelated (CC
≈ 0).
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Figure 3: Geographical location of the North Korean Nuclear Test site (NKTS) and three IMS
arrays. MJAR and MKAR recorded all announced nuclear test conducted by North Korea (2006,
2009, 2013, 2016).
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at IMS arrays MJAR and MKAR.
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Figure 5: A comparison between semi-empirical detection statistics. Target data include a summa-
tion of (1) seismograms recorded on 08-Oct-2006 at MJAR and MKAR with (2) amplitude-scaled
waveforms recording the first announced nuclear test from North Korea the next day. Template
waveforms are shown in Figure 4. a: The correlation statistic r (x) (Equation 3) computed by
processing 1 hr of data. The horizontal line shows the PrFA = 10−8 threshold. Peaks in the time
series indicate detections on 11 noise-contaminated waveforms. The vertical “errorbar” at the top
left shows the range of corresponding cone statistic values. b: The waveform cone statistic s (x)
(Equation 17) for the 2006 target data, shown with PrFA = 10−8 detection thresholds (horizontal
line). Lightly shaded data identifies waveforms. c: The solid histogram shows the empirical PDF
computed estimated from s (x) data. The dark dashed curve shows the predicted null distribution
using parameter estimates from these data. The vertical line corresponds to the horizontal line
at left. The shaded region indicates the acceptance region (s (x) > η) for event detection and
corresponds to the shading for s (x) in b
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Figure 6: Various detection statistics computed from the three North Korean tests. The left panels’
horizontal axis begins 900 s before REB origin times and shaded data segments show time windows
centered on points where each data statistic exceeds its respective threshold. a: The correlation
statistic r (x) (Equation 3) computed by processing 2006-test data recorded at MJAR and MKAR
with template waveforms extracted from the 2013 explosion. The horizontal line shows the PrFA
= 10−8 threshold. b: The waveform cone statistic s (x) (Equation 17) for the 2006 target data,
shown with equivalent PrFA = 10−8 detection thresholds. c: Same as a, but for the 2009 test data.
d: Same as b, but for the 2009 test data. e: A family of histograms and predicted (theoretical)
PDFs that describe the convex cone statistics. Middle, nearly identical solid PDF curves show the
histograms computed using s (x) data in b and d. Nearly identical dashed curves show predicted
null distributions using parameter estimates from these data. Filled PDF curves give the alternative
PDF for s (x), assuming noncentrality parameters consistent with a low SNR mb = 3.25 event. The
vertical line corresponds to the horizontal line in b.
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Figure 7: The performance of the cone detector versus waveform similarity 1− ρ∞ at fixed magni-
tude. The thick curve shows the probability of detecting an mb = 3.25 explosion using a template
extracted from the 2013 test (Figure 4). The triangular marker indicates approximate ρ∞ values
associated with the 2009 test. The square marker indicates the approximate ρ∞ value associated
with the 2006 test. Circular markers show where the 0.9 and 0.5 detection probability lines intersect
the performance curve. Vertical lines show deterministic correlation values associated with each
threshold probability.
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Figure 8: Detection performance of the cone detector at fixed waveform similarity ρ∞ and variable
explosion magnitude. Curves show the probability of detecting an explosion colocated with the 2009
(left) or 2006 source (right) using a template extracted from the 2013 test (Figure 4). Horizontal
lines show (from top to bottom) 0.95, 0.9 and 0.66 detection probability thresholds. Circular
markers show where the 0.9 detection probability lines intersect each performance curve, and vertical
lines show the corresponding magnitudes.
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Figure 9: Observed and predicted receiver operating characteristic curves for r (x) and s (x) ver-
sus semi-empirical explosion magnitude. a: Shaded region shows range of ROC curves for r (x)
(Equation 3) that give the predicted detection performance in noise conditions recorded over 24
hrs on 08-Oct-2006. Superimposed stair plot shows the empirical detection performance (recorded
detections/total events) averaged over 24 hr of data like that included in Figure 5. Error bars
indicate the range in observed detection probability over the day and should not be misinterpreted
as indicating that probability values exceeding one. b: Shaded region shows range of ROC curves
for s (x) (Equation 16) that give the predicted detection performance for the cone detector. Super-
imposed stair plot show observed detection performance averaged over 24 hr of data analogous to
that shown in a.
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Figure 10: Superimposed empirical correlation and cone detection ROC curves from Figure 9. The
correlation detector provides a marginally higher performance compared with the cone detector.
The uppermost solid curve compares the lower-bound predicted correlation detector performance.
The topmost horizontal line shows a reference 0.99 probability that intersects the prediction curve
at the topmost circular marker. The corresponding vertical line shows the 0.99 probability explosion
magnitude and its intersection with the observed correlation detection performance. The lowermost
horizontal line shows the corresponding magnitude discrepancy at the predicted 0.99 detection
probability (intersection marked by leftmost circular marker). The range between the horizontal
lines that intersect the vertical axis measures the detection probability discrepancy.
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Appendix A686

This appendix develops the PDF and detection performance of the sample correlation detection687

statistic r (x) (Equation 3). Because the form of the sample correlation PDF differs from that688

reported elsewhere, we derive the general form here.689

The relative square error in approximating a data stream x = u + n (the H1 model of Equation690

15), with a waveform template w, is the ratio of the least-squares error ||e||2 to measure signal691

energy ||x||2. This error may be re-written as a ratio of quadratic forms:692

||e||2

||x||2
=
||x− Âw||2

||x||2

=

‖x−
〈x, w〉
‖w‖2

w‖2

||x||2

= 1−
〈x, w〉2

||w||2||x||2

= 1− r2 (x)

(A.1)

where Â is the maximum likelihood estimate for template waveform amplitude. We now rewrite the693

right hand side of the second equality in Equation A.1 as a ratio of subspace projections:694

‖x−
〈x, w〉
‖w‖2

w‖2

||x||2
=

‖P⊥W (x) ‖2

‖P⊥W (x) ‖2 + ||PW (x) ||2
(A.2)

where W is the subspace span (w), W⊥ is the orthogonal complement to W , PW is the projector695

onto W and P⊥W is the projector onto W⊥. The denominator follows from the Pythagorean identity696
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for Hilbert Spaces. We define two noncentrality parameters from these terms:697

λ =
‖PW (E {x}) ‖2

σ2
=
||PW (u) ||2

σ2
= ρ2
∞

‖u‖2

σ2

λ⊥ =
‖P⊥W (E {x}) ‖2

σ2
=
||P⊥W (u) ||2

σ2
=
(
1− ρ2

∞
) ‖u‖2
σ2

(A.3)

where the expected value and linear-projection operators commute. We combine the previous three698

equations to rewrite r2 (x):699

1−
(
1− r2 (x)

)
=
‖P⊥W (x) ‖2 + ||PW (x) ||2

‖P⊥W (x) ‖2 + ||PW (x) ||2

−
‖P⊥W (x) ‖2

‖P⊥W (x) ‖2 + ||PW (x) ||2

=
‖PW (x) ‖2

‖P⊥W (x) ‖2 + ||PW (x) ||2

d
=

χ2
1(λ)

χ2
1(λ) + χ2

NE−1(λ⊥)

(A.4)

where
d
= is distributional equality, χ2

NE−1(λ⊥) is the noncentral Chi-square distribution with NE −700

1 degrees of freedom and noncentrality parameter λ⊥, and χ2
1(λ) is the noncentral Chi-square701

distribution with one degree of freedom and noncentrality parameter λ. From the definition of the702

Beta distribution Kay (1998):703

r2 (x) ∼ B

(
t,

1

2
,

1

2
(NE − 1);λ, λ⊥

)
(A.5)

where B (t,N1, N2, α, β) is the doubly noncentral Beta distribution function. It is evaluated at t704

(with the same domain as r2), has N1 and N2 degrees of freedom, and noncentrality parameters705

α and β. The presence or absence of a target signal is indexed by the hypothesis Hk on the data.706

Hypothesis H0 symbolizes that the data consist of only noise, whereas H1 signifies that the data707

consists of a signal plus noise. The scalar NE denotes the effective number of independent samples708
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within x. When the data stream contains only noise, the hypothesis H0 is satisfied and r2 has a709

central Beta distribution, where λ⊥ = λ = 0. In the presence of signal, the data stream x generally710

has non-zero projections PW (x) and P⊥W (x) that are respectively onto and orthogonal to the noise-711

contaminated template data vector w. In this case λ, λ⊥ 6= 0, and r2 has doubly noncentral Beta712

distribution. If the target signal is an amplitude scaled copy of the template waveform, then x =713

Aw + n, λ⊥ = 0, and r2 has a noncentral Beta distribution. The singly noncentral Beta distribution714

therefore provides an absolute upper bound on the detection performance of a correlation detector715

consistent with assumptions underlying H1.716

We derive PDF for r from the density of r2 using a variable transformation; we additionally consider717

values r < 0:718

fR (r (x) ;Hk) = B

r2 (x) ;
1

2
,

1

2
(NE − 1) , λ, λ⊥

+

B

−r2 (x) ;
1

2
,

1

2
(NE − 1) , λ, λ⊥

 .

(A.6)

The form of this distribution function differs from that derived in similar applications by Weichecki-719

Vergara and others Weichecki-Vergara et al. (2001). In that case, the signal-present data stream720

was assumed to correlate sample-by-sample with the template waveform, and the test statistic had721

a Pearson-moment product distribution.722

Appendix B723

This appendix outlines a method to estimate the effective degrees of freedom NE of a data stream724

x as N̂E . This estimate provides an ostensible alternative to a full covariance matrix Σ 6= σ2I725

for x that is generally required for temporally or spatially correlated data. Density functions726

for detection statistics that process x are then easily parametrized by the effective number of727

independent data stream samples NE . This scalar theoretically equates to twice the time (T )728
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bandwidth (B) product (2TB) of the data stream over the temporal duration of the correlation729

template. Real data often show that NE � 2TB, however. This occurs both naturally and through730

processing operations like bandpass filtering, which replace each sample with itself plus a weighted731

sum of its neighbors and thereby introduce intra-sample statistical dependence. To quantify the732

influence such correlation exerts on the shape of our detector’s PDF curves, we implement an733

empirical estimator for NE , denoted N̂E , to continuously update such PDF parameterizations (e.g.,734

fR (r ; H0). This estimator computes the sample correlation between the multichannel template735

waveform w and several hundred psuedo-random, commensurate data vectors drawn from non-736

intersecting segments of pre-processed, signal sparse data within x (see ((Weichecki-Vergara et al.,737

2001, Section 2.4))). We compute the sample variance σ̂2
R of the resultant correlation time series738

using 99.9% of the data by excluding 0.01% of the extreme left and right tails of its histogram.739

This provides the needed statistic to estimate NE :740

N̂E = 1 +
1

σ̂2
R

. (B.1)

We use N̂E to parametrize fR (r ; Hk) (Equation A.6), compute detector thresholds η̂, and quantify741

detector performance.742

Appendix C743

This appendix develops the cone detection statistic (Equation 17), its PDF, and illustrates its744

performance; it was originally introduced in the context of icequake detection Carmichael (2013).745
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We first reference the two competing hypotheses of Equation 15:746

H0 : x ∼ N
(
0, σ2I

)
(noise present, σ unknown)

H1 : x ∼ N
(
u, σ2I

)
(noisy target present, u ∈ C, σ unknown)

(C.1)

We further assume that pre-processing operations (like filtering) and naturally occuring temporal747

data correlation reduces the number of statistically independent samples in x to NE < N . Given748

this parameterization, the PDF under H0 is denoted as f0 (x; H0) and the PDF under H1 as749

f1 (x; H1), where:750

f0 (x; H0) =
1

(2πσ2)
1
2 ·NE

exp

[
−||x||

2

2σ2

]
f1 (x; H1) =

1

(2πσ2)
1
2 ·NE

exp

[
−||x− u||

2

2σ2

]
, u ∈ C

(C.2)

We estimate the unknown parameters under each model listed in Equation 15 and select the ap-751

plicable hypothesis using a log-generalized likelihood ratio test (log-GLRT). This test evaluates752

the PDFs for the competing hypotheses at the maximum likelihood estimates of their unknown753

parameter values and then compares their log-ratio to a threshold value η. The test’s decision rule754

is a conditional, scalar inequality:755

Λ (x) = ln

max
σ,u
{ f1 (x; H1) }

max
σ
{ f0 (x; H0) }

 H1

≷
H0

η, (C.3)

The maximum likelihood estimate of the variance under each hypothesis is Scharf and Friedlander756

(1994); Kay (1993, 1998):757

σ̂2
1 = argmax

σ
{ ln [f1 (x; H1)] } =

||x− u||2

N

σ̂2
0 = argmax

σ
{ ln [f0 (x; H0)] } =

||x||2

N
,

(C.4)
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where the subscripts on each sample variance estimate in Equation C.4 indicate the applicable758

hypothesis and N is the number of samples in x, not to be confused with NE . To estimate the759

distribution mean under H1, we evaluate f1 (x;H1) at the MLE for σ1, and perform a constrained760

maximization of u ∈ C:761

û = argmax
u∈C
{ ln [f1 (x; H1)] }|σ= σ̂1

= argmin
u∈C

{
||x− u||2

}
.

(C.5)

The solution to this equation,762

û = PC (x) , (C.6)

is the MLE for u. That is, û is the vector that minimizes the distance between the observed data763

x and all points that constitute the multiplet set C. This defines the projection of x onto C as the764

unique signal that is either interior to, or on the boundary ∂C of C Stark and Yang (1998). The765

sample variance and cone-element MLEs from Equation C.4 reduce Λ (x) to:766

2

NE
Λ (x) = ln

(
σ̂2

0

)
− ln

(
σ̂2

1

)
= − ln

[
||x− PC (x)||2

||x||2

]
.

(C.7)

We obtained Equation C.7 without specifying C aside from it’s convexity. This result therefore767

applies to any normally distributed data confined in a convex set. In the case that C is described by768

the correlation constraint of Equation 14, the projection energy has a conic decomposition:769

||x− PC (x)||2 = ||x||2 − ||PC (x)||2 , (C.8)

as given by Moreau’s Decomposition Theorem Moreau (1962), which is analogous to the orthog-770

onal subspace decomposition from linear analysis Stark and Yang (1998). The log-ratio is then771
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expressible as:772

2

NE
Λ (x) = − ln

[
1− ||PC (x)||2

||x||2

]
. (C.9)

The right hand side of Equation C.7 is of the form − ln
(
1− x2

)
, which is monotonically increasing773

for 0 ≤ x ≤ 1. Since ||PC (x)||2 / ||x||2 ≤ 1, Equation C.9 may be inverted for it’s argument to774

provide an equivalent test statistic s (x) for the decision rule introduced in Equation C.3:775

||PC (x)||
||x||

= s (x)
H1

≷
H0

η. (C.10)

Equation C.10 demonstrates that s (x) compares the ratio of the projected signal energy to the776

original signal energy. The exact projection PC (x) of x, from a general Hilbert Space and onto C,777

is derived in Stark and Yang (Stark and Yang, 1998, pages 111-113). Vector PC (x) is a nonlinear778

projection that depends on the value of x, and is either in C, on it’s boundary ∂C, or zero. We779

document an equivalent form of that projection here:780

PC (x) =



0 :
r√

1− r2
≤ −c, PC (x) = 0

γ
z

||z||
:

r√
1− r2

∈
[
−c, 1

c

]
, PC (x) ∈ ∂C

x :
r√

1− r2
>

1

c
, PC (x) ∈ C.

(C.11)

The constants and vectors in Equation C.11 are:781

r ,
〈ŵ,x〉
||x||

c ,

√
1− ρ2

∞
ρ2
∞

γ , ρ∞ ||x||
(
r + c

√
1− r2

)
z

||z||
, ρ∞ŵ +

√
1− ρ2

∞ ·
x− 〈ŵ,x〉ŵ
||x− 〈ŵ,x〉ŵ||

(C.12)
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The vector ŵ in Equation C.12 is the normalized multichannel template waveform defined by782

Equation 14, not to be confused with a parameter estimate. Using the definitions in Equation783

C.12, the test statistic s (x) of Equation 16 is then expressible as:784

s (x) =



0 :
r√

1− r2
≤ −c, PC (x) = 0

γ

||x||
:

r√
1− r2

∈
[
−c, 1

c

]
, PC (x) ∈ ∂C

1 :
r√

1− r2
>

1

c
, PC (x) ∈ C

(C.13)

The detection statistic s (x) must be equivalent to the correlation coefficient as ρ∞ approaches a785

limiting value of one. To demonstrate this, we first note that any projected signal has a decreasing786

probability of lying inside the cone as ρ∞ decreases (Equation C.13). Similarly, any projected signal787

has a decreasing probability zero of lying on the cone vertex. It follows that only the projection788

onto the limiting cone boundary ∂C is non-trivial, so that:789

s (x) = lim
ρ∞→1−

γ

||x||

= lim
ρ∞→1−

ρ∞ ||x||
(
r + c

√
1− r2

)
||x||

= r,

(C.14)

where lim
ρ∞→1−

is the limit of ρ∞ approaching from values less than 1, whereby c→ 0.790

We derive the requisite PDF for s (x) from its CDF FS (s;Hk) using the law of total probability.791

In words, this law states that the probability that the cone statistic random variable S takes on792

a value as large as s (x) is the sum of three conditional probabilities: the probability that (1)793

S < s (x), given Pr {PC (x) = 0}, plus (2) the probability S < s (x), given Pr {PC (x) ∈ ∂C}, plus794
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(3) the probability that S < s (x), given Pr {PC (x) ∈ C◦}:795

FS (s (x) ;Hk) =

Pr {S ≤ s (x) |PC (x) ∈ C◦} · Pr {PC (x) ∈ C◦}+ · · ·

Pr {S ≤ s (x) |PC (x) ∈ ∂C} · Pr {PC (x) ∈ ∂C}+ · · ·

Pr {S ≤ s (x) |PC (x) = 0} · Pr {PC (x) = 0}

(C.15)

where Pr {A|B} is the conditional probability of A, given B is true and statement PC (x) ∈ C◦ is796

equivalent to PC (x) = x (x ∈ C). To express FS (s;Hk) in a computationally evaluable form, we797

write its three conditioning factors in terms of r/
√

1− r2 through Equation C.13. Two of these798

terms are trivial to evaluate from the definition for s (x) = ||PC (x)|| / ||x||:799

Pr {S < s (x) |PC (x) = 0} = 0, since s (x) = 0

Pr {S ≤ s (x) |PC (x) ∈ C◦} = 1, since s (x) = 1

(C.16)

The other terms in Equation C.15 are expressible using r/
√

1− r2 through Equation C.13:800

Pr {PC (x) ∈ ∂C} = Pr

−c < r√
1− r2

<
1

c


Pr {PC (x) ∈ C◦} = Pr

 r√
1− r2

≥
1

c


(C.17)

We evaluate these probabilities by developing the CDF FQ (q;Hk) for the ratio q = r/
√

1− r2 (k801

= 0, 1). To do so, we make a change of variables with FR (r;Hk):802

FQ (q;Hk) = FR

 − q√
1 + q2

;Hk

+ FR

 q√
1 + q2

;Hk

 (C.18)

where FR (r;Hk) is the CDF for correlation statistic r. We then use Equation C.18 to write the803
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identities from Equation C.17 in terms of FQ (q;Hk):804

Pr {PC (x) ∈ ∂C} = FQ

1

c
;Hk

− FQ (−c;Hk)

Pr {PC (x) ∈ C◦} = 1− FQ

1

c
;Hk


(C.19)

Last, we evaluate the derivative of Pr {PC (x) ∈ ∂C} in Equation C.15 through a variable change on805

r, where −c < r/
√

1− r2 < 1/c. To do so, we first note that s (x) = ρ∞(r− c
√

1− r2) is invertible806

over this domain and express r as a function of s:807

r(s) = ρ∞s−
√

1− ρ2
∞

√
1− s2 (C.20)

The PDF of s (x) over −c < r/
√

1− r2 < 1/c is therefore:808

fS (s;Hk|PC (x) ∈ ∂C) = fR (r (s) ;Hk) ·
∣∣∣∣dr(s)ds

∣∣∣∣ (C.21)

where |PC (x) ∈ ∂C indicates the restricted domain of r. To obtain the PDF for s (x) over −1 ≤809

r ≤ 1, we differentiate Equation C.15, and substitute Equation C.19 and Equation C.21 into the810

results. This produces a density function that depends on only s, c, and fR (•;Hk):811

fS (s;Hk) =

[
FQ

(
1

c
;Hk

)
− FQ (−c;Hk)

]
· fR (r (s) ;Hk) ·

∣∣∣∣dr(s)ds

∣∣∣∣
(C.22)

since the top line of Equation C.15 is constant and differentiates to zero.812

We assessed the validity of our derivation using a Monte Carlo simulation whereby we projected813

random noise and noise-contaminated signal vectors onto several convex cones of increasing aperture814

and computed the statistic s (x). This simulation demonstrates that Equation C.22 agrees with815
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our empirical histograms (Figure C.2).816

We additionally compared our cone detector thresholds against constant false-alarm-on-noise con-817

straints. We thereby inverted for cone detector thresholds using a fixed value for the effective818

degrees of freedom (NE = 400) over a grid of decorrelation parameters (1− ρ∞) that ranged from819

0 to 0.25. We repeated this process for for several false alarm rates (Figure C.3). The resulting820

detection thresholds increase most rapidly for small changes near ρ∞ = 1, where the signal space of821

the cone geometrically collapses to the one dimensional subspace used by the associated correlation822

detector. The slope of the curves here may become undefined. We will explore this result more823

quantitatively in future work.824
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Cone vertex =  
template waveform 

Projection of non-target  
waveform onto cone exterior 

Non-target waveform 

Target waveform  
in cone 

Basis vector 1 

Basis vector 2 

Basis vector 3 

Figure C.1: Notional geometry of convex cone projections inside C and onto its boundary ∂C.
Multichannel signals are vectorially represented here in three dimensions but occupy hundreds or
thousands of dimensions in practice.
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Figure C.2: Null hypothesis PDFs for three cases of deterministic template-target waveform cor-
relation uncertainty: ρ∞ = 1, ρ∞ = 0.99, ρ∞ = 0.9 (where NE = 400). The PDFs for r (x) and
s (x) equate for identically shaped waveforms as shown by the purple and black curves. The shaded
region shows a Monte Carlo simulation of the PDF for s (x) when ρ∞ = 0.9.
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Figure C.3: Cone detector thresholds η (Equation 21) for constant values of PrFA compared against
deterministic uncertainty in the template-target waveform cross correlation 1−ρ∞, whereNE = 400.
The left-most tangent line to the 10−6 curve shows a rapid increase in η for small uncertainties in
deterministic template/target waveform correlation relative to near-linear increases in η for larger
uncertainties. ρ∞ = 0 corresponds to the correlation detector.
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Appendix D825

An unbiased estimator for the relative magnitude ∆m between an explosion that generates a noisy826

waveform x = u + n and an explosion that generates a detector template w is (Carmichael and827

Hartse, 2016, Equation B.8):828

∆m̂ =
1

2
log10

 ||x||2||w||2
−

σ̂2
1N

||w||2

 , (D.1)

where σ2
1 denotes an estimate for noise variance in x (subscript denotes hypothesis H1 is true) and829

N is the number of samples in x, not to be confused with NE . To relate ||x||2 to the noncentrality830

parameters λ and λ⊥ that shape the PDF fS (s;H0), we again use the standard Pythagorean831

identity for Hilbert Spaces:832

||x||2 = ‖PW (x) ‖2 + ||P⊥W (x) ||2 (D.2)

where the subspace projection terms are defined in Equation A.2. Next, we use the definitions of833

u, λ, and λ⊥ to rewrite ||x||2 as:834

||x||2 = σ2
1

(
λ+ λ⊥

)
+ (noise term) (D.3)

where “noise term” is an inner product expression that includes n and σ2
1 is the true variance of the835

target data. The noncentrality parameters in Equation D.3 are related by (Carmichael and Hartse,836

2016, Equation A.11):837

λ⊥ =

1− ρ2
∞

ρ2
∞

λ, (D.4)

59



and the expected value of “noise term” in Equation D.3 is:838

E {noise term} = E {2〈u,n〉}+ E
{
||n||2

}
= σ2

1N.

(D.5)

where E {〈u,n〉} = 0 since the noise is zero mean. Finally, we combine the preceding equations839

(Appendix D), remove the noise-bias term σ2
1N , and write λ in terms of relative magnitude:840

λ = ρ2
∞

||w||2

σ2
1

· 102∆m (D.6)

Equation D.6 thereby expresses the noncentrality parameter for both the correlation and cone de-841

tection statistic in terms of the four fundamental scalars describing the wavefield: the deterministic842

correlation ρ∞ between the template and target waveforms, the signal energy ||w||2 of the template843

waveform, the noise variance σ2
1 of the target data, and the relative magnitude ∆m between the844

template and target source.845

For our purposes, Equation D.6 parameterizes λ by relative magnitude. In such cases, the term ρ∞846

is estimable from Equation 12, σ2
1 is estimable from the top term of Equation C.4, and ||w||2 is effec-847

tively deterministic since correlation detectors generally implement a high SNR templates.848

Appendix E849

We identified three potentially significant sources (risks) of error in our detection capability assess-850

ments and empirical comparison. The first risk of error is attributable to certain details of template851

selection. Specifically, waveforms recorded on IMS arrays with large differences in source-receiver852

separation distance show temporal gaps in start time of the high-SNR portions of the recorded sig-853

nals and therefore require sample imputation. Zero padding such data to equalize length can lead to854

several biases, however. For example, supplementing data with a large number of zeros causes the855

empirical null PDF (histogram) for the correlation detection statistic to become more concentrated856
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around its mean and thereby artificially lowers the detector’s threshold. The statistic histogram857

then fits the predicted PDF poorly and biases estimates of the degree of freedom parameter N̂E ,858

since the correlation variance is reduced by the presence of zeros (Equation B.1). To mitigate these859

problems and facilitate template scanning, we therefore abstained from zero-padding the interme-860

diate, noisy portion of our waveform template. Instead, we shifted each seismogram channel by an861

amount equal to its start time, minus the earliest start time among all template channels (template862

and target data). We thereby maintained the signal-only length of our template, avoided padding,863

and kept all data aligned to the same origin time. In addition to preventing estimation bias, this864

shifting also mitigated needless computation of padded data and prevented divide-by-zero errors.865

We therefore consider our template selection to present a low (direct) risk of error.866

Estimation of ρ∞ presents a second potential source of error. This arises largely from ambiguous867

estimation schemes for waveform SNR that influence the variability of ρ0 (Equation 11), which, in868

turn, inversely scales ρ̂∞ (Equation 12). We mitigated ambiguity problems by carefully selecting869

an associated low variance estimate for SNR which normalizes ρ∞ (Equation 12). One “common-870

sense” estimate for SNR is the ratio of an N -point sample variance estimate of the data proceeding871

the detected signal, divided by an N -point sample variance estimate of data preceding the detected872

signal (a renormalized STA/LTA). It is obvious, however, than any such estimate will be biased873

by background signals contaminating the data steam, which reduce the resultant SNR estimate for874

u. It follows that ρ̂∞ will be a biased estimator, and give lower-than-true deterministic correlation875

values. A better approach requires pre-processing target data with a power (STA/LTA) detector,876

removing samples that exceed a threshold for signal declaration, and then computing the noise877

variance σ̂2
0 from this remaining data. The quotient:878

ˆSNR =
‖u‖2

(N − 1)σ̂2
0

(E.1)
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then gives a reduced-bias SNR estimate. We used this estimator to compute ρ0 as:879

ρ̂0 =

√
ˆSNR (w)√(

ˆSNR (w) + 1
)

√
ˆSNR (u)√(

ˆSNR (u) + 1
) (E.2)

We therefore consider our estimates of ρ0 to be robust, and unlikely to induce significant uncer-880

tainty.881

Last, noise variance estimation presents an additional risk of error. As we noted before (see Es-882

timation Deterministic Decorrelation), background seismicity adds signal to the time series and883

can thereby bias such estimates. We therefore processed our target data in parallel with a power884

(STA/LTA) detector that operated at a 10−6 false-alarm-on-noise probability, removed data that885

exceeded the associated threshold, and used the remaining (almost) signal free data to estimate886

noise variance on each IMS channel. This scheme thereby avoided bias from signal. A second887

form of bias was also present, however. This latter bias originated from the non-uniform number888

of channel samples processed by the detector. Specifically, we noted above that our template in-889

cluded large temporal gaps over portions of the waveform, and consequently, records from MJAR890

contribute less to each detection statistic than do longer duration records at MKAR. An alternative891

noise variance estimate that accounts for such disparate channel contribution employs the pooled892

variance σ̂2
P , given by:893

σ̂2
P =

∑L
k=1(Nk − 1)σ̂2

k

N − L
(E.3)

where σ̂2
k is the noise variance estimate from channel k. We performed a subsequent analysis using894

this estimator, and found that it was often smaller than our naive estimation that used equally895

weighted data. This would have increased the effective size of the noncentrality parameter λ that896

controls predicted detection power. It may explain why, at times, our observed detection capability897

exceeded the concurrent predicted detection capability. We therefore suggest that performance898

discrepancy may generally result from an inconsistency in noise variance estimation.899
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